## **Crystal Structure of a Porous Zirconium Phosphate/ Phosphonate Compound and Photocatalytic Hydrogen Production from Related Materials**

Houston Byrd,<sup>†,§</sup> Abraham Clearfield,<sup>\*,‡</sup> Damodara Poojary,<sup>‡</sup> Kenneth P. Reis,<sup>†</sup> and Mark E. Thompson<sup>\*,†</sup>

Department of Chemistry, University of Southern California, Los Angeles, California 90089, and Department of Chemistry, Texas A&M University, College Station, Texas 77843

Received January 17, 1996. Revised Manuscript Received May 24, 1996<sup>®</sup>

The preparation, structure, and catalytic properties of porous zirconium phosphate/ phosphonate compounds are discussed. The crystal structure for the Zr<sub>2</sub>(PO<sub>4</sub>)(O<sub>3</sub>PCH<sub>2</sub>- $CH_2$ (viologen) $CH_2CH_2PO_3$ ) $X_3$ · $3H_2O$ , X = halide, is presented. The structure was determined ab initio from X-ray powder diffraction data and refined by Rietveld methods. The compound crystallizes with the symmetry of space group P2/c with a = 13.589(2) Å, b = 8.8351(9) Å, c = 9.229(1) Å, and  $\beta = 100.79^{\circ}$ . The structure consists of inorganic lamellae bridged by phosphono-ethyl-viologen groups. Large pores are formed in this material, which contain one halide ion and three water molecules per formula unit. The free halide ions in these materials are readily exchanged for  $PtCl_4^{2-}$  ions. The Pt salt was reduced to give fine metal particles inside the porous solid. These materials produce hydrogen photochemically from water using ultraviolet light. The average rate of  $H_2$  production is 0.15 mL/h with a lower limit quantum yield of 4% based only on the ultraviolet portion of the spectrum in the presence of a sacrificial reductant (EDTA).

## Introduction

The structural control of molecular materials is an expansive area of research. To make materials with predetermined properties, molecular species need to be arranged in the bulk solid state in a manner that enhances the desired physical properties of the molecules. A wide range of techniques have been explored to prepare molecular materials with a specific alignment in the bulk.<sup>1-5</sup> A technique that can lead to wellordered, thermally stable materials involves the formation of lamellar metal/organic compounds, such as transition-metal phosphonates.<sup>6</sup> These metal phosphonates can be prepared with a large variety of organic groups, leading to materials with a wide range of properties.6,7

While a wide variety of structures have been formed with molecular materials, leading to interesting electronic, optical, or magnetic properties, their use as catalysts are very limited. In the majority of these molecular materials, the solids are dense, and only the surfaces of the particles are accessible to external reagents or substrates. In contrast, inorganic frameworks can be used to construct many microporous materials,<sup>8-12</sup> with very open structures, which allow reagents or substrates to access the majority of the solid.

<sup>&</sup>lt;sup>†</sup> University of Southern California.

<sup>&</sup>lt;sup>‡</sup> Texas A&M University.

<sup>§</sup> Permanent address: Ďepartment of Chemistry, Montevallo University, Montevallo, AL 35115.

To whom correspondence should be addressed.

<sup>&</sup>lt;sup>®</sup> Abstract published in Advance ACS Abstracts, August 1, 1996. (1) (a) Etter, M. C. Acc. Chem. Res. 1990, 23, 120-126 and references therein. (b) Panunto, T. W.; Urbanczk-Lipkowska, Z.; Johnson, R.; Etter, M. C. J. Am. Chem. Soc. **1987**, *109*, 7786. (c) Etter, M. C.; Frankenbach, G. M. Chem. Mater. **1989**, *1*, 10. (d) Folkers, J. P.; Zerkowski, J. A.; Laibinis, C. T.; Seto, T.; Whitesides, G. M. ACS

Symp. Ser. **1992**, 499, 10–23 and references therein. (2) (a) Chiang, W.; Ho, D. M.; Van Engen, D.; Thompson, M. E. *Inorg. Chem.* **1993**, 32, 2886–2893. (b) Stults, B. R.; Marianelli, R. S.; Day, V. W. Inorg. Chem. 1975, 14, 722. (c) Cesari, M.; Neri, C.; Perotti, E.; Zazzetta, A. J. Chem. Soc., Chem. Commun. **1970**, 276. (d) Mathew, M.; Carty, A. J.; Palenik, G. J. J. Am. Chem. Soc. **1970**, *92*, 3197. (e) Hanack, M.; Deger, S.; Keppler, U.; Lange, A.; Leverenz, A.; Rein, M.
 *Synth. Met.* 1987, 19, 739. (f) Pollagi, T. P.; Stoner, T. C.; Dallinger,
 R. F.; Gilbert, T. M.; Hopkins, M. D. J. Am. Chem. Soc. 1991, 113, 703. (g) Chisholm, M. H.; Hoffman, D. M.; Huffman, J. C. Inorg. Chem. 1983, 22, 2903.

<sup>(3) (</sup>a) Whittingham, M. S.; Jacobson, A. J. Intercalation Chemistry, Academic Press: New York, 1982. (b) Schollhorn, R. In Inclusion Compounds, Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds.; Academic: London, 1984; Vol. 1, Chapter 7. (c) Reactivity of Solids and Layered Compounds; American Chemical Society Meeting, New York, April 1986; Solid State Ionics 1986, 22, 1–148.

<sup>(4) (</sup>a) Molecular Engineering in Ultrathin Polymeric Films, Stroeve,
P., Franses, Eds.; Elsevier Applied Science: London, 1987; reprinted from Thin Solid Films 1987, 152 (1, 2). (b) Kuhn, H. Pure Appl. Chem.
1981, 53, 2105–2122. (c) Möbius, D. Can. J. Phys. 1990, 68, 992. (d)
Matzgare, B. M. Wiczer, D. C. Ladidoux, P. K. Talyrosi, M. A. Languyir, Matzgare, M. M. Kanguyir, Science, M. A. Languyir, Science, M. S. Languyir, Science, Scien Metzger, R. M.; Wiser, D. C.; Laidlaw, R. K.; Takassi, M. A. *Langmuir* **1990**, *6*, 350–357.

<sup>(5) (</sup>a) Ulman, A. An Intorduction to Ultrathin Organic Films: from *Langmiur-Blodgett to Self Assembly*; Academic Press: Boston, 1991. (b) Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y.-T.; Parikh, A. N.; Nuzzo, R. G. J. Am. Chem. Soc. 1991, 113, 7152-7167. (c) Laibinis, P. E.; Whitesides, G. M. J. Am. Chem. Soc. 1992, 114, 1990-1995. (d) Finklea, H. O.; Avery, S.; Lynch, M.; Furtsch, T. *Langmuir* 1987, *3*, 409–413. (h) Poojary, D. M.; Zhang, B.; Clearfield, A. *Angew. Chem., Int. Ed. Engl.* 1994, *33*, 2324. (i) Oritz-Avila, C. Y.; Bhardwaj, C.; Clearfield, A. *Inorg. Chem.* **1994**, *333*, 2499.
(6) Thompson, M. E. *Chem. Mater.* **1994**, *6*, 1168–1175.
(7) (a) Alberti, G.; Costantino, U.; Allulli, S. Tomassini, N. J. Inorg.

Nucl. Chem. 1978, 40, 1113–1117. (b) Dines, M. B.; DiGiacomo, P. M. Inorg. Chem. 1981, 20, 92–97. (c) Dines, M. B.; Griffith, P. C. Inorg. Chem. **1983**, *22*, 567–569. (d) DiGiacomo, P. M.; Dines, M. B. Polyhedron **1982**, *1*, 61–68. (e) Dines, M. B.; Griffith, P. C. Polyhedron **1983**, *2*, 607–611. (f) Alberti, G.; Costantino, U. Inclusion Compounds, Inorganic and Physical Aspects of Inclusion, Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds.; Oxford University Press: Oxford, 1991; Chapter 5. (g) Troup, J. M.; Clearfield, A. *Inorg. Chem.* **1977**, *16*, 3311– 3314

<sup>(8)</sup> Barrer, R. M. Hydrothermal Chemistry of Zeolites; Academic Press: New York, 1982.
(9) Suib, S. L. Chem. Rev. 1993, 93.

 <sup>(10)</sup> Smith, J. V. Chem. Rev. 1988, 88, 149.
 (11) Mortier, W. J.; Schoonheydt, R. A. Prog. Solid State Chem. **1985**, *16*, 1

<sup>(12)</sup> Ocelli, M. L.; Robson, H. E. A.C.S. Symp. Ser. 1989, 398.

These inorganic materials have many important applications, including ion exchange<sup>13</sup> and heterogeneous catalysis.<sup>14,15</sup> Metal phosphonates can also be constructed as porous compounds<sup>16,17</sup> and potentially used as heterogeneous catalysts. To make porous metal phosphonates, a mixture of monophosphonic (or phosphoric) acids and diphosphonic acids are used in the synthesis (eq 1). Most of the porous metal phosphonate

$$Zr^{4+} + (1 - x)H_2O_3P - R - PO_3H_2 + 2xH_2O_3P - R' \rightarrow Zr(O_3P - R')_{2x}(O_3P - R - PO_3)_{1-x}$$
(1)

materials use organic pillaring agents which are inert.<sup>6</sup> The main purpose of the pillaring agent in the materials prepared thus far is to act as structural members, holding the inorganic layers apart. However, porous metal phosphonates have recently been prepared in which the organic pillars are quite active.<sup>6,16</sup> Therefore, one can envision designing new solid-state materials with exciting properties by controlling the organic moieties incorporated into the pillars.

In this paper we report the preparation of new porous metal phosphonate compounds and the crystal structure of one of these materials. The structure was determined from synchrotron powder diffraction data. The refined Rietveld formula for this compound is Zr<sub>2</sub>(PO<sub>4</sub>)(O<sub>3</sub>PCH<sub>2</sub>- $CH_2$ (viologen) $CH_2CH_2PO_3$ ) $X_3 \cdot 3H_2O$ , X = halide. The structure consists of metal phosphate/phosphonate lamellae, bridged by alkylviologen groups. Large pores are formed in this material, which contain one halide ion and three waters per formula unit. This free halide can readily be exchanged for PtCl<sub>4</sub><sup>2-</sup> ions, and the Pt salt reduced to give colloidal metal particles inside the porous solid. By taking advantage of the photoinduced charge-separated state observed in this porous material and related compounds, we have been able to produce hydrogen gas from an aqueous system in the presence of a sacrificial reductant (EDTA).

## **Experimental Section**

**Materials.** Zirconium(IV) oxychloride octahydrate (ZrOCl<sub>2</sub>-8H<sub>2</sub>O, Aldrich), 85% orthophosphoric acid (H<sub>3</sub>PO<sub>4</sub>, Fisher Scientific), 2-carboxyethylphosphonic acid (Aldrich), and 51% hydrofluoric acid (HF, Fisher Scientific) were used as purchased without further purification. Viologen bisphosphonic acid (PV) was prepared via the Michaelis–Arbuzov<sup>18</sup> reaction and has been reported previously.<sup>19,20</sup>

**Instrumentation.** FTIR spectra were obtained (KBr pellets) using a Nicolet 730 FTIR spectrometer. Powder X-ray

(13) (a) Breck, D. W. Zeolite Molecular Sieves, Kreiger: Malabar, FL, 1974. (b) Meier, W. M.; Olson, D. H. Atlas of Zeolite Structure Types, Butterworth: London, 1987.

(16) Vermeulen, L. A.; Thompson, M. E. Chem. Mater. 1994, 6, 77–81.

(17) (a) Dines, M. B.; Cooksey, R. E.; Griffith, P. C.; Lane, R. H. Inorg. Chem. **1983**, 22, 1004–1006. (c) Alberti, G.; Costantino, U.; Vivani, R.; Zappelli, P. Mater. Res. Soc. Symp. Proc. **1991** 233, 95 and references therein. (d) Wang, J. D.; Clearfield, A. Mater. Chem. Phys. **1993**, 35, 208–219 and references therein. (e) Yang, C. Y.; Clearfield, A. React. Polym. **1987**, 5, 13–21. (f) Clearfield, A. J. Mol. Catal. **1984**, 251, 262 (c) Clearfield, A. Comparison to here the theory of the second sec

251–262. (g) Clearfield, A. Comments Inorg. Chem. 1990, 10, 89–128.
 (18) Bhattacharaya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415–430.

diffraction measurements were obtained at ambient temperatures using a Scintag XDS 2000 automated powder diffractometer with Cu K $\alpha$  radiation and a solid-state detector. The data were collected over the angular range  $2^{\circ} \leq 2\theta \leq 60^{\circ}$  at a rate of  $2^{\circ}$ /min. Photolysis of materials were performed with a 200 W mercury-xenon arc lamp (Spectral Energy Corp., Westwood, NJ). Production of hydrogen gas was measured using a Hewlett-Packard 5890 Series II gas chromatograph. The amount of hydrogen was measured as a percentage of a known hydrogen standard (5% H<sub>2</sub>, balance N<sub>2</sub>) and then multiplied by the free volume of the irradiated cell.

Electron probe microanalysis (EPMA) was performed on a CAMECA SX-50. Conditions for collecting X-ray microanalytical data included an accelerating voltage of 15 kV, a regulated beam current of 20 nA, and a defocused electron probe 10  $\mu$ m in diameter. The following reference compounds and minerals were used as calibration standards: ZrO<sub>2</sub> (Zr L $\alpha$ ), Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F (P K $\alpha$ ), Pt (Pt M $\alpha$ ), along with Si or CaSiO<sub>3</sub> (Si K $\alpha$ ) depending upon the substrate composition. Matrix corrections were performed using the  $\Phi(\rho, Z)$  method.

Synthesis of Zirconium(phosphate)bisethylviologen **Phosphonate** { $Zr_2(PO_4)PVX_3$ }. This compound has been prepared in a manner similar to that reported previously.<sup>16</sup> In a round-bottom flask, 1.12 mM of ZrOCl<sub>2</sub> was added to 25 mL of water followed by adding 4.72 mmol of HF (51%) solution. A solution of 0.56 mmol of N,N-bis(2-phosphonoethvl)-4.4'-bipvridine (PV) and 1.12 mmol of 85% orthophosphoric acid (POH) dissolved in 25 mL of water was slowly added to the Zr/HF solution while stirring. The mixture was then heated under reflux conditions. After about 3 h, a white precipitate forms. Refluxing was continued for a period of 7 days. After refluxing, the solid was filtered and washed with water and then acetone before being air-dried. This material has also been prepared from a 50/50 butanol/water solvent system. Powder X-ray and IR data agree with those reported previously.<sup>16</sup>

**Hydrothermal Synthesis of Zr<sub>2</sub>(PO<sub>4</sub>)PVX<sub>3</sub>.** In a Teflonlined acid digestion bomb, 1.14 mmol of ZrOCl<sub>2</sub>·8H<sub>2</sub>O, 14.8 mmol of HF, 0.55 mmol of PV, and 1.34 mmol of H<sub>3</sub>PO<sub>4</sub> were added to 17 mL of H<sub>2</sub>O. The bomb was sealed and placed in an oven and heated to 195 °C ( $\pm$ 5 °C) for 5 days. The resulting microcrystalline powder was filtered and washed with water, ethanol, and acetone and air-dried. The powder X-ray diffraction pattern for this material is shown in Figure 1.

**Platinum Exchange.** Typically, 200 mg of the porous compound was placed in 20 mL of a  $5 \times 10^{-3}$  M solution of  $K_2PtCl_4$  and heated at 65 °C for 18–24 h. The solution was not exposed to light to limit the degradation of the salts to metal colloids. The exchanged compounds are then filtered and rinsed with water and acetone. The Pt<sup>2+</sup> ions are then reduced to Pt<sup>0</sup> by suspending the exchanged compound in water and bubbling H<sub>2</sub> gas through the solution for 2 h at 60 °C. The Pt-reduced materials are filtered and washed with water and acetone before being air-dried.

X-ray Data Collection, Structure Solution, and Refinement of Zr(PO<sub>4</sub>)PV. Step-scanned X-ray powder data for the sample of  $Zr_2(PO_4)PVX_3$  (side-loaded into a flat aluminum sample holder) were collected on the finely ground sample by means of a Rigaku computer-automated diffractometer. The X-ray source was a rotating anode operating at 50 kV and 180 mA with a copper target and graphite monochromatic radiation. Data were collected between 3° and 70° in  $2\theta$  with a step size of 0.02° and a count time of 25 s/step. Data were mathematically stripped of the  $K\alpha_2$  contribution and peak picking was conducted by a modification of the double-derivative method.<sup>21</sup> The powder pattern was indexed by Ito methods  $^{22a}$  on the basis of the first  ${\bf \hat{2}0}$  observed lines. The best solution, which indexed all the lines yielded a monoclinic cell with systematic absences consistent with the space group P2/c. The unit-cell dimensions except the interlayer spacing (a axis) are similar to that found for a mixed Zr phosphate/ phosphonate compound (Zr phosphate/PMIDA)<sup>23</sup> whose structure was determined previously from synchrotron powder

<sup>(14)</sup> Imelik, B.; et. al. *Catalysis of Solids*; Elsevier: New York, 1980 and references therein.

<sup>(15) (</sup>a) Lago, R. M. U.S. Patent 4,025,572, Mobil, 1977. (b) Flanigen, E. M.; Bennett, J. W.; Grose, R. W.; Cohen, J. D.; Patton, R. L.; Krichner, R. M.; Smith, J. V. *Nature* **1978**, *271*, 512.

 <sup>(19)</sup> Vermeulen, L. A.; Snover, J. L.; Sapochak, L. S.; Thompson,
 M. E. J. Am. Chem. Soc. 1993, 115, 11767–11774.

<sup>(20)</sup> Snover, J. L.; Byrd, H.; Suponeva, E. P.; Vicenzi, E.; Thompson, M. E. *Chem. Mater.*, in press.

<sup>(21)</sup> Mellory, C. L.; Snyder, R. L. Adv. X-ray Anal. 1979, 23, 121.

 <sup>(22) (</sup>a) Visser, J. W. J. Appl. Crystallogr. 1969, 2, 89. (b) Rudolf,
 P. R.; Clearfield, A. Inorg. Chem. 1989, 28, 1706.



Figure 1. Observed (+) and calculated (-) profiles (X-ray intensity versus 2q) for the Rietveld refinement. The bottom curve is the difference plot on the same scale. Data were collected using the synchrotron light source ( $\lambda = 0.655$  37 Å).

diffraction data. Although the phosphonate in this case contains a bulky carboxylate complex and it does not bridge the layers as in the present case, the unit cells were similar.

Synchrotron X-ray powder diffraction data were collected in capillary mode,<sup>24</sup> using a linear position sensitive detector<sup>25</sup> at the X-7A beamline at the National Synchrotron Light Source, Brookhaven National Laboratory. The wavelength ( $\lambda$ = 0.655 37(5) Å) was calibrated using a CeO<sub>2</sub> standard (a =5.4113(1) Å).  $2\theta$  diffraction angles from 5 to 32.25 were scanned through step intervals of 0.5° on the PSD with counting times of 20 s/step. The central 3° of the PSD was binned to avoid parallax problems. The powdered sample was sealed in a 0.3 mm diameter quartz capillary. The sample capillary was rotated during data collection in order to mitigate against preferred orientation and to improve powder statistics.

Structure Solution. Interacted intensities were extracted from the profile over the range  $3^{\circ} < 2\theta < 50^{\circ}$  by decomposition methods as described earlier.<sup>22b</sup> This procedure produced 43 single indexed reflections and 15 peaks with two or three contributors. The intensities of the latter set of peaks were divided equally between the number of contributing reflections and added to the starting data set. A Patterson map was computed using this data set in the TEXSAN<sup>26a</sup> series of singlecrystal programs. The positions of the Zr atom and that of the P atoms were derived from this Patterson map. Interestingly, these positions were similar to the Zr and P positions in the phosphonate/PMIDA compound.<sup>23</sup> The inorganic layer structure in the Zr phosphate/PMIDA compound was therefore used for Rietveld refinement and structure completion.

For the Rietveld refinement, the raw powder data were transferred to the GSAS<sup>26b</sup> program package for full-pattern refinement. After the initial refinement of scale, background, and unit-cell constants, the atomic positions were refined with soft constraints for Zr and P polyhedra. From the difference Fourier maps and model building, the positions of the carbon atoms of the viologen group were derived which were then included in the structural model. The agreement between the observed and calculated powder profiles improved significantly and a series of subsequent difference Fourier maps allowed

| Table 1. C | rystal Data | i for Zra | (POA) PVX |
|------------|-------------|-----------|-----------|
|------------|-------------|-----------|-----------|

| Table I. Crystal D | ata for $Zr_2(PO_4)PVX_3$ |
|--------------------|---------------------------|
| space group        | P2/c                      |
| $2\theta$ range    | 7.3–32°                   |
| radiation          | synchrotron               |
| wavelength         | 0.65537 Å                 |
| a                  | 13.5895(22) Å             |
| Ь                  | 8.8351(9) Å               |
| С                  | 9.2294(10) Å              |
| $\beta$            | 100.79°                   |
| expected wRp       | 0.022                     |
| wRp                | 0.08                      |
| Rp                 | 0.062                     |
| ŔF                 | 0.15                      |
|                    |                           |

the positioning of all the lattice water molecules and the charge-neutralizing F atom. Final refinement was carried out with soft constraints for all the atoms whose weight was reduced as the refinement progressed. These soft constraints could not be removed completely without reducing the stability of the refinement. The thermal parameters for all the atoms were refined isotropically. Neutral atomic scattering factors were used for all atoms.<sup>26b</sup> Corrections were made for preferred orientation effects but not for anomalous dispersion and absorption. The crystal data are given in Table 1, and the atom positions are given in Table 2. The observed (+) and calculated (-) profiles (X-ray intensity versus  $2\theta$ ) for the Rietveld refinement are shown in Figure 1.

Hydrogen Production. In these experiments 25 mg of the reduced compound and 5 mL of a 0.1 M EDTA solution were placed in a  $1 \text{ cm} \times 7 \text{ cm}$  quartz cuvette (a stir bar is also added). The cuvette is sealed with Teflon/rubber septum and purged with N<sub>2</sub>. The amount of time spent purging the system is important to the hydrogen production. For the best results, N<sub>2</sub> was bubbled through the EDTA/compound suspension for more than 45 min. Photolysis of the compound was carried out with an unfiltered 200 W Hg/Xe lamp. The lamp irradiates a 2 cm length of the cell. The lamp intensity at the sample was estimated using cutoff filters and a silicon radiometer. The intensity of the lamp below 320 nm was estimated to be 15–20 mW/cm<sup>2</sup>, while the intensity between 320 and 800 was roughly 200 mW/cm<sup>2</sup>. Hydrogen gas production was monitored by gas chromatography. A 0.5 mL gas sample was removed from the sealed cell and injected into the gas chromatograph. The area of the hydrogen peak is compared to a standard 5% hydrogen gas mixture (balance nitrogen).

## **Results and Discussion**

Structure of the Porous Compounds. A layered structure is the most common motif for the tetravalent

<sup>(23)</sup> Poojary, D. M.; Zhang, B.; Clearfield, A. Angew. Chem., Int. Ed. Engl. 1994, 33, 2324-2326.

<sup>(24)</sup> Cox, D. E.; Toby, B. H.; Eddy, M. M. Aust. J. Phys. 1988, 41, 117. Cox, D. E. Synchrotron Radiation Crystallography, Academic Press: London, 1992.

<sup>(25)</sup> Smith, G. C. Synch. Radiat. News 1991, 4, 24.

<sup>(26) (</sup>a) TEXSAN Structure analysis package, Molecular Structure Corp., The Woodlands, TX, 1987 (revised). (b) GSAS: Generalized Structure Analysis System; Larson, A., von Dreele, R. B., Eds.; LANSCE, Los Alamos National Laboratory, copyright 1985-88 by the Regents of the University of California.

Table 2. Atom Positions for Zr<sub>2</sub>(PO<sub>4</sub>)PVX<sub>3</sub>

|             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y                                | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ZR1         | 0 1099(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 2533(12)                       | 0.0705(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| P1          | 0.1294(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1174(18)                       | 0.4295(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 01          | 0.1537(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1527(20)                       | 0.2769(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 04          | 0.0660(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4400(15)                       | 0.1698(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 05          | 0.0652(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3485(21)                       | 0.1331(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 02          | 0.1517(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0517(13)                       | 0.4789(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| O3          | 0.0209(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1488(23)                       | 0.4384(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| C1          | 0.1943(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2540(24)                       | 0.5564(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| F1          | 0.2509(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3339(24)                       | 0.0814(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| P2          | 0.0000000(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5423(22)                       | 0.2500000(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| C2          | 0.2238(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.211(4)                         | 0.7170(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| N1          | 0.3347(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1658(30)                       | 0.7232(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| C3          | 0.3491(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0064(29)                       | 0.7177(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| C4          | 0.4003(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0519(22)                      | 0.6169(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| C5          | 0.4552(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02/1(17)                       | 0.5340(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| C0<br>C7    | 0.4200(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1830(19)<br>0.2462(25)         | 0.5291(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| O(W1)       | 0.3900(19)<br>0.4101(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2403(23)                       | 0.0349(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| O(W1)       | 0.4101(19)<br>0.300(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3478(24)                       | 0.3527(32)<br>0.780(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| U(W2)<br>F2 | 0.300(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3088(32)<br>0.303(4)           | 0.789(4)<br>0.2500000(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ΓL          | 0.3000000(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.303(4)                         | 0.2300000(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             | bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bond d                           | bond distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             | Zr1-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.08                             | 2.085(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|             | Zr1-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.03                             | 0(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|             | Zr1-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.04                             | 2.044(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|             | Zr1-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.095(13)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             | Zr1-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.992(14)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             | ZrI-FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.029(14)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             | PI-OI<br>D1 O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.33813)<br>1.574(15)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| P1-O2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3/4(13)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             | D1 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 5 1                            | 7(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|             | P1-03<br>P1-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.51                             | 7(16)<br>5(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|             | P1-O3<br>P1-C1<br>P2-O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.51<br>1.79<br>1.58             | 7(16)<br>5(16)<br>8(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | P1-O3<br>P1-C1<br>P2-O5<br>P2-O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.51<br>1.79<br>1.58<br>1.55     | 7(16)<br>5(16)<br>8(13)<br>5(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|             | P1-O3<br>P1-C1<br>P2-O5<br>P2-O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.51<br>1.79<br>1.58<br>1.55     | 7(16)<br>5(16)<br>8(13)<br>5(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|             | P1-O3<br>P1-C1<br>P2-O5<br>P2-O4<br>bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.51<br>1.79<br>1.58<br>1.55     | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|             | P1-O3<br>P1-C1<br>P2-O5<br>P2-O4<br>bond<br>01-Zr1-O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.51<br>1.79<br>1.58<br>1.55     | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|             | P1-O3<br>P1-C1<br>P2-O5<br>P2-O4<br>bond<br>01-Zr1-O4<br>O1-Zr1-O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>99.5(7)<br>'8.9(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|             | P1-O3<br>P1-C1<br>P2-O5<br>P2-O4<br>bond<br>01-Zr1-O4<br>01-Zr1-O5<br>01-Zr1-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>99.5(7)<br>78.9(9)<br>77.3(7)<br>90.9(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|             | P1-O3<br>P1-C1<br>P2-O5<br>P2-O4<br>bond<br>01-Zr1-O4<br>01-Zr1-O5<br>01-Zr1-O2<br>01-Zr1-O3<br>01-Zr1-F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>37.3(7)<br>36.6(7)<br>39.0 (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|             | P1-O3<br>P1-C1<br>P2-O5<br>P2-O4<br>bond<br>01-Zr1-O4<br>01-Zr1-O5<br>01-Zr1-O2<br>01-Zr1-O3<br>01-Zr1-F1<br>O4 Zr1-O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>37.3(7)<br>36.6(7)<br>90.0(8)<br>11.1(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|             | P1-O3<br>P1-C1<br>P2-O5<br>P2-O4<br>01-Zr1-O4<br>O1-Zr1-O5<br>O1-Zr1-O2<br>O1-Zr1-O3<br>O1-Zr1-F1<br>O4-Zr1-O5<br>O4-Zr1-O5<br>O4-Zr1-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>37.3(7)<br>36.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|             | P1-O3<br>P1-C1<br>P2-O5<br>P2-O4<br>01-Zr1-O4<br>O1-Zr1-O5<br>O1-Zr1-O2<br>O1-Zr1-O3<br>O1-Zr1-F1<br>O4-Zr1-O5<br>O4-Zr1-O2<br>O4-Zr1-O2<br>O4-Zr1-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>88.9(9)<br>87.3(7)<br>36.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>83.4(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ 01-Zr1-O4\\ O1-Zr1-O5\\ O1-Zr1-O2\\ O1-Zr1-O2\\ O1-Zr1-O3\\ O1-Zr1-F1\\ O4-Zr1-O5\\ O4-Zr1-O2\\ O4-Zr1-O3\\ O4-Zr1-F1\\ O4-Zr1-O3\\ O4-Zr1-F1\\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>77.3(7)<br>36.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ \hline \\ 01-Zr1-O4\\ O1-Zr1-O5\\ O1-Zr1-O2\\ O1-Zr1-O2\\ O1-Zr1-O3\\ O1-Zr1-F1\\ O4-Zr1-O5\\ O4-Zr1-O2\\ O4-Zr1-O3\\ O4-Zr1-F1\\ O5-Zr1-O2\\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>77.3(7)<br>36.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>12.0(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ \hline \\ 01-Zr1-O4\\ O1-Zr1-O5\\ O1-Zr1-O2\\ O1-Zr1-O3\\ O1-Zr1-O3\\ O1-Zr1-F1\\ O4-Zr1-O5\\ O4-Zr1-O2\\ O4-Zr1-O3\\ O4-Zr1-F1\\ O5-Zr1-O2\\ O5-Zr1-O3\\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>77.3(7)<br>66.6(7)<br>90.00(8)<br>91.1(7)<br>76.1(9)<br>13.4(8)<br>92.7(8)<br>92.0(7)<br>12.5(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>87.3(7)<br>66.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>92.7(8)<br>92.5(8)<br>91.0(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ \hline \\ \hline \\ 01-Zr1-O4\\ O1-Zr1-O5\\ O1-Zr1-O2\\ O1-Zr1-O3\\ O1-Zr1-O3\\ O1-Zr1-F1\\ O4-Zr1-O5\\ O4-Zr1-O2\\ O4-Zr1-O3\\ O4-Zr1-F1\\ O5-Zr1-O2\\ O5-Zr1-O3\\ O5-Zr1-F1\\ O2-Zr1-O3\\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>87.3(7)<br>66.6(7)<br>90.00(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>92.0(7)<br>92.5(8)<br>91.10(8)<br>84.0(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ \hline \\ 01-Zr1-O4\\ O1-Zr1-O5\\ O1-Zr1-O2\\ O1-Zr1-O3\\ O1-Zr1-O3\\ O1-Zr1-F1\\ O4-Zr1-O5\\ O4-Zr1-O2\\ O4-Zr1-O3\\ O4-Zr1-F1\\ O5-Zr1-O2\\ O5-Zr1-O3\\ O5-Zr1-F1\\ O2-Zr1-O3\\ O2-Zr1-F1\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>57.3(7)<br>66.6(7)<br>00.0(8)<br>01.1(7)<br>76.1(9)<br>03.4(8)<br>02.0(7)<br>02.5(8)<br>01.0(8)<br>04.0(9)<br>03.6(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ 01-Zr1-O4\\ O1-Zr1-O5\\ O1-Zr1-O2\\ O1-Zr1-O3\\ O1-Zr1-O3\\ O1-Zr1-F1\\ O4-Zr1-O5\\ O4-Zr1-O2\\ O4-Zr1-O3\\ O4-Zr1-F1\\ O5-Zr1-O3\\ O5-Zr1-F1\\ O2-Zr1-O3\\ O2-Zr1-F1\\ O3-Zr1-F1\\ O3-Zr1-F1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>57.3(7)<br>66.6(7)<br>10.00(8)<br>01.1(7)<br>76.1(9)<br>03.4(8)<br>12.0(7)<br>02.5(8)<br>01.0(8)<br>140.0(9)<br>19.6(8)<br>72.9(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ \hline \\ 01-Zr1-O4\\ O1-Zr1-O5\\ O1-Zr1-O2\\ O1-Zr1-O3\\ O1-Zr1-O3\\ O1-Zr1-F1\\ O4-Zr1-O5\\ O4-Zr1-O2\\ O4-Zr1-O3\\ O4-Zr1-F1\\ O5-Zr1-O2\\ O5-Zr1-O3\\ O5-Zr1-F1\\ O2-Zr1-O3\\ O2-Zr1-F1\\ O3-Zr1-F1\\ O1-P1-O2\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>37.3(7)<br>36.6(7)<br>00.0(8)<br>01.1(7)<br>76.1(9)<br>03.4(8)<br>12.7(8)<br>12.2(7)<br>02.5(8)<br>01.0(8)<br>44.0(9)<br>49.6(8)<br>72.9(10)<br>3.2(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ \hline \\ 01-Zr1-O4\\ O1-Zr1-O5\\ O1-Zr1-O2\\ O1-Zr1-O3\\ O1-Zr1-O3\\ O1-Zr1-F1\\ O4-Zr1-O5\\ O4-Zr1-O3\\ O4-Zr1-O3\\ O4-Zr1-F1\\ O5-Zr1-O2\\ O5-Zr1-O3\\ O5-Zr1-F1\\ O2-Zr1-O3\\ O2-Zr1-F1\\ O3-Zr1-F1\\ O3-Zr1-F1\\ O1-P1-O2\\ O1-P1-O3\\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>37.3(7)<br>36.6(7)<br>00.0(8)<br>01.1(7)<br>76.1(9)<br>03.4(8)<br>02.7(8)<br>02.5(8)<br>01.0(8)<br>44.0(9)<br>93.6(8)<br>72.9(10)<br>3.2(13)<br>3.0(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ \hline \\ D0-Zr1-O4\\ O1-Zr1-O5\\ O1-Zr1-O2\\ O1-Zr1-O3\\ O1-Zr1-O3\\ O1-Zr1-F1\\ O4-Zr1-O5\\ O4-Zr1-O2\\ O4-Zr1-O3\\ O4-Zr1-F1\\ O5-Zr1-O2\\ O5-Zr1-F1\\ O5-Zr1-O3\\ O5-Zr1-F1\\ O2-Zr1-O3\\ O2-Zr1-F1\\ O3-Zr1-F1\\ O1-P1-O2\\ O1-P1-O3\\ O1-P1-C1\\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.51<br>1.79<br>1.58<br>1.55     | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>9.5(7)<br>88.9(9)<br>37.3(7)<br>36.6(7)<br>90.0(8)<br>11.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.5(8)<br>11.0(8)<br>84.0(9)<br>93.6(8)<br>72.9(10)<br>3.2(13)<br>3.0(13)<br>17.3(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>88.9(9)<br>87.3(7)<br>36.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>92.7(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4(8)<br>93.4 |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>77.3(7)<br>36.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(10)<br>3.2(13)<br>3.0(13)<br>97.7(1(12))<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(10)<br>92.7(1                         |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ \hline \\ D1-Zr1-O4\\ O1-Zr1-O5\\ O1-Zr1-O2\\ O1-Zr1-O2\\ O1-Zr1-O3\\ O1-Zr1-F1\\ O4-Zr1-O5\\ O4-Zr1-O2\\ O4-Zr1-O3\\ O4-Zr1-O3\\ O4-Zr1-F1\\ O5-Zr1-O2\\ O5-Zr1-O3\\ O5-Zr1-F1\\ O2-Zr1-O3\\ O5-Zr1-F1\\ O3-Zr1-F1\\ O1-P1-O2\\ O1-P1-O3\\ O1-P1-C1\\ O2-P1-O3\\ O2-P1-C1\\ O3-P1-C1\\ O3-P1-C1\\ O4-P1-O2\\ O4-P1-O3\\ O4-P1-C1\\ O5-Zr1-C1\\ O5-Zr1-$                                                                                                                                                                                                                                                                                                                    | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>77.3(7)<br>36.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>92.9(7)<br>92.5(8)<br>91.0(8)<br>84.0(9)<br>92.6(8)<br>72.9(10)<br>3.2(13)<br>3.0(13)<br>77.3(12)<br>97.1(12)<br>3.9(11)<br>91.9(13)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)<br>90.9(15)                                           |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>77.3(7)<br>36.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>92.0(7)<br>92.2(7)<br>92.2(7)<br>92.2(7)<br>92.2(8)<br>91.0(8)<br>84.0(9)<br>99.6(8)<br>72.9(10)<br>3.2(13)<br>3.0(13)<br>77.3(12)<br>97.1(12)<br>3.9(11)<br>91.9(13)<br>88.9(15)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)<br>91.1(2)    |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>77.3(7)<br>66.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>92.7(8)<br>92.0(7)<br>92.5(8)<br>91.10(8)<br>84.0(9)<br>93.6(8)<br>72.9(10)<br>3.2(13)<br>3.0(13)<br>17.3(12)<br>17.3(12)<br>17.1(12)<br>3.9(11)<br>91.9(13)<br>18.9(15)<br>19.1(6)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16)<br>9.2(16   |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ \hline \\ P2-O4\\ \hline \\ \hline \\ \hline \\ P2-O4\\ \hline \\ \hline \\ P1-O3\\ \hline \\ \hline \\ P1-O2\\ \hline \\ \hline \\ P1-O3\\ \hline \\ P1-O1\\ \hline \\ P1-O3\\ \hline \\ P1-C1\\ \hline \\ P2-O4\\ \hline \\ P2-O4\\ \hline \\ P2-O5\\ \hline \\ P4-P2-O5\\ \hline \\ \hline \\ \hline \\ P4-P2-O5\\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$ | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>77.3(7)<br>76.66(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.5(8)<br>91.10(8)<br>84.0(9)<br>89.6(8)<br>72.9(10)<br>3.2(13)<br>3.0(13)<br>97.3(12)<br>97.1(12)<br>3.9(11)<br>91.9(13)<br>98.9(15)<br>99.1(6)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>2.3(10)<br>3.2(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13)<br>3.0(13   |  |
|             | $\begin{array}{c} P1-O3\\ P1-C1\\ P2-O5\\ P2-O4\\ \hline \\ \hline \\ \hline \\ P2-O4\\ \hline \\ \hline \\ \hline \\ P2-O4\\ \hline \\ \hline \\ \hline \\ P2-O4\\ \hline \\ \hline \\ P1-O2\\ \hline \\ \hline \\ P1-O3\\ \hline \\ P1-C1\\ \hline \\ P1-C1\\ \hline \\ P2-O4\\ \hline \\ P2-O5\\ \hline \\ \hline \\ P2-O5\\ \hline \\ P2-O5\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.51<br>1.79<br>1.58<br>1.55<br> | 7(16)<br>5(16)<br>8(13)<br>5(12)<br>angle<br>39.5(7)<br>78.9(9)<br>77.3(7)<br>66.6(7)<br>90.0(8)<br>91.1(7)<br>76.1(9)<br>93.4(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.7(8)<br>92.5(8)<br>91.10(8)<br>84.0(9)<br>89.6(8)<br>72.9(10)<br>3.2(13)<br>3.30(13)<br>97.3(12)<br>97.1(12)<br>3.9(11)<br>91.9(13)<br>99.1(6)<br>2.3(10)<br>90.1(6)<br>2.3(10)<br>90.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(6)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)<br>91.1(7)   |  |

metal phosphonates.<sup>6</sup> In these types of solids, inorganic layers are formed in which metal ions are strongly bound to the phosphonate oxygens. These inorganic layers have phosphonate groups above and below the inorganic plane. The result is inorganic lamellae, which are separated by organic phosphonate groups. The bonding within the inorganic portion of these materials is very similar to that observed in  $\alpha$ -Zr(O<sub>3</sub>POH)·H<sub>2</sub>O.<sup>7</sup> The bonding between adjacent layers is strongly dependent on the phosphonate molecules and can range from weak van der Waals interactions to strong covalent



**Figure 2.** Schematic representation of (a)  $Zr(O_3PR)PV$  and (b)  $Zr_2(PO_4)PVX_3$ . R = alkyl and OH. Lone "P" atoms in (b) represent  $-PO_3$  groups, which are bound to three different Zr atoms.



**Figure 3.** XRD patterns of the zirconium viologen compounds: (a) pure  $Zr(PO_4)PV$ ; (b) mixed  $Zr(PO_4)PV/ZrPV(X)$ ; (c) pure ZrPV(X).

bonds. The strongest bonding and thus most stable structures are formed when a bisphosphonic acid is used, such that the inorganic lamellae are held together by covalent bonds.<sup>7,17,27</sup>

Recently, we have reported the preparation and photophysical properties of crystalline layered zirconium viologen phosphonate (ZrPV(X)) compounds.<sup>19,28</sup> The formula for this material is (ZrF<sub>3</sub>)<sub>2</sub>(O<sub>3</sub>PCH<sub>2</sub>CH<sub>2</sub>-(viologen)CH<sub>2</sub>CH<sub>2</sub>PO<sub>3</sub>)·H<sub>2</sub>O.<sup>29</sup> This viologen-bisphosphonic acid will be abbreviated PV throughout the paper. These compounds show efficient photoinduced charge separation, that is stable in air.<sup>19,28</sup> ZrPV(X) is layered but does not possess the same structural motif observed in most of the tetravalent metal phosphonate solids.<sup>29</sup> In ZrPV(X), the individual lamellae consist of both organic and inorganic components and are held together by van der Waals, electrostatic, and hydrogen bonding forces. ZrPV(X) layers are built from double chains of ZrF<sub>3</sub>O<sub>3</sub> octahedra, which are bridged by the viologen phosphonate groups. Adjacent layers are packed with the anionic ZrF<sub>3</sub>O<sub>3</sub> octahedra above and below the cationic viologen groups. This unusual structure is believed to be formed to minimize electrostatic repulsions between the viologen groups. The longevity of the charge-separated state is thought to arise from

<sup>(27)</sup> Poojary, D. M.; Hu, H. L.; Campbell, F. L.; Clearfield, A. Acta Crystallogr. 1993, B49, 996.

<sup>(28)</sup> Vermeulen, L. A.; Thompson, M. E. Nature 1992, 358, 656-658.

<sup>(29)</sup> Poojary, D. M.; Vermeulen, L. A.; Vicenzi, E.; Clearfield, A.; Thompson, M. E. Chem. Mater. 1994, 6, 1845-1849.



**Figure 4.** Structure of  $Zr_2(PO_4)PVF_3$  viewed along the *c* axis (shown in perspective). Phosphate phosphorous atoms are shown in orange and *PV* phosphorous atoms are shown in gray.

the ability of the lattice to prevent diffusion of oxygen into the structure.

A family of mixed metal phosphate/viologen–phosphonate and metal phosphonate/viologen–phosphonate materials have been prepared.<sup>16,30</sup> A wide range of different materials of the general formula  $Zr(O_3P-R')_{2x}$  ( $O_3P-R-PO_3$ )<sub>1-x</sub> were prepared, in which the -R' group was -OH,  $-CH_2CH_2X$ , X = -Br, -COOH,  $-CH_3$ ,  $-NH_2$ , and the -R– group was  $-(CH_2)_n$ –viologen–( $CH_2$ )<sub>n</sub>–, where n = 2, 4 (eq 1). Most of these materials give simple powder X-ray diffraction patterns, consisting

only of a series of 001 lines, which suggests a structure similar to that shown in Figure 2a.

In the synthesis of the mixed zirconium phosphate/ phosphonate compounds involving *PV* and phosphoric acid, two different phases were observed. One of these phases showed only 00*I* reflections in the powder X-ray diffraction patterns (d = 18 Å), indicative of a layered structure.<sup>16</sup> Electron probe microanalytical (EPMA) data for this compound were consistent with the composition: Zr(O<sub>3</sub>POH)(O<sub>3</sub>P-CH<sub>2</sub>CH<sub>2</sub>-viologen-CH<sub>2</sub>-CH<sub>2</sub>-PO<sub>3</sub>)<sub>0.5</sub>Cl, abbreviated Zr(O<sub>3</sub>POH)*PV*.<sup>29</sup> The other phase was significantly more crystalline, with a interlayer spacing of 13.5 Å. The X-ray diffraction pattern for the 13.5 Å phase is shown in Figure 1.

<sup>(30)</sup> Reis, K. P.; Runyan, C.; Thompson, M. E., unpublished results.



**Figure 5.** Portion of the  $Zr_2(PO_4)PVF_3$  lattice showing the coordination geometry around Zr. Only half of each viologen group is shown for clarity. Phosphate phosphorous atoms are shown in orange and *PV* phosphorous atoms are shown in gray.

The standard synthetic procedure to obtain the compounds discussed above involves refluxing a mixture of the two acids and Zr in the presence of HF for several days, and often leads to materials which are a mixture of ZrPV(X) and the 13.5 Å phase (Figure 3b). Hydrothermal synthesis of the same compounds in a Teflonlined acid digestion bomb leads to a sample that is significantly more crystalline and pure phased. We were unable to get crystals large enough for singlecrystal X-ray diffraction studies, but were successful in solving the structure by ab initio methods with Rietveld analysis and refinement of powder X-ray and synchrotron diffraction data. The structure is shown schematically in Figure 2b. The stoichiometry of this crystalline phase is  $Zr_2(PO_4)PVX_3\cdot 3H_2O$ , X = halide.

The structure of Zr<sub>2</sub>(PO<sub>4</sub>)PVF<sub>3</sub>·3H<sub>2</sub>O is closely related to a zirconium phosphate/phosphonate determined by Poojary et. al.<sup>23</sup> Atom positions as well as the bond lengths and angles for the inorganic portion of the structure are listed in Table 2. The bond lengths and angles for the ethylviologen group are within the expected range, and are given in the supporting information. The structure is shown in Figure 4, viewed down the *c* axis. The Zr atoms are octahedrally coordinated by two oxygen atoms from the phosphate groups, three oxygen atoms from the viologen phosphonate groups (in a facial geometry), and an F atom pointing into the organic layer, as shown in Figure 5. One way to picture this solid is as sheets of  $(ZrF)_2PV$ lying parallel to the ac plane, which are bridged by rows of phosphate groups running parallel to the *c* axis. This bridging gives rise to roughly rectangular channels,

running parallel to the *c* axis, seen in Figure 4. The bonding of the phosphonate groups to the Zr atoms is difficult to see in Figures 4 or 5. A view of the structure down the *a* axis (Figure 6) shows that each phosphonate group is bound to three different Zr atoms. In this view, the phosphonates are shown with only a two-carbon chain for clarity. The Zr–F bonds are labeled as to whether they are oriented out of the plane of the page (labeled u, up in Figure 6) or into the plane of the page (labeled d, down in Figure 6). The phosphonate groups form strong bonds to both sides of the inorganic lamelae. This phosphonate bonding forces the P–C bond to lie nearly parallel to the inorganic layers.

Another way to describe the structure is as inorganic lamellae, parallel to the bc plane, which are bridged by diethylviologen groups. The viologen groups in the interlamellar region form a criss-cross stack, so that electrostatic repulsions are minimized. The closest faceto-face contact between viologen groups (along *c*) is 4.6 Å. This distance is longer than the related distance in ZrPV(X), which is 3.5 Å.<sup>29</sup> The closest viologenviologen contact across the pore (along *b*) is approximately 8 Å with a layer-to-layer distance of 13.5 Å giving rise to fairly large pores. Three water molecules and one halide ion per formula unit are found within this cavity. An alternate way of listing the compound, which emphasizes the difference between the different types of halide in the structure is  $(ZrF)_2(PO_4)PVF\cdot3H_2O$ .

The stoichiometry of this crystalline phase is Zr<sub>2</sub>- $(PO_4)PVX_3 \cdot 3H_2O$ , X = halide, with fluoride being the dominant halide in the sample studied by powder X-ray diffraction. Electron probe microanalysis (EPMA) data confirmed the Zr/P ratio of 2:3. The Zr/F ratio was found to be approximately 1:1 instead of the expected 2:3. However, the discrepancy may be due to substitution of chloride for fluoride in the compound; however, this should not be significant for materials prepared by hydrothermal methods. Under refluxing conditions, the fluoride concentration gradually decreases due to evaporation of HF, leading to incorporation of reasonable amounts of chloride into the solids. The halide for the materials prepared hydrothermally is almost exclusively fluoride, since the levels of fluoride in the sealed bomb remain high throughout crystal growth. Alternatively, the low halide level could be due to inaccuracies in quantifying halides in these materials by EPMA. In analyzing Zr*PV*(X) by EPMA we found that chloride loss during microanalysis prevented us from being able to measure levels of chloride ion in the materials.<sup>29</sup> If the levels of Zr, P, Cl, and F are measured for the same portion of a sample of Zr<sub>2</sub>(PO<sub>4</sub>)PVX<sub>3</sub>·3H<sub>2</sub>O over time, the levels of Zr and P remain constant, while the Cl and F steadily decrease. EPMA analysis of Zr<sub>2</sub>(PO<sub>4</sub>)*PV*X<sub>3</sub>· 3H<sub>2</sub>O was able to determine the presence of chlorine in the sample; however, precise determination of the amount of chloride or fluoride was not possible due to the loss of halide.

Solid-state <sup>31</sup>P NMR spectra of this compound showed the presence of two types of phosphate as well as the phosphonate. A very similar spectrum was reported previously and assigned to  $PO_4^{3-}$  and  $HPO_4^{2-}$ .<sup>19</sup> There are several ways to rationalize the presence of  $HPO_4^{2-}$ in these solids. There could be a small amount of  $\alpha$ -Zr(O<sub>3</sub>POH)<sub>2</sub> mixed with the porous compound, which does not show up clearly in the powder X-ray diffraction patterns. Another possibility is that some of the  $PO_4^{3-}$ 



**Figure 6.** Portion of the  $Zr_2(PO_4)PVF_3$  lattice viewed down the *b* axis. Phosphonate groups are shown in gray with only two carbons. Phosphate phosphorous atoms are shown in orange.

groups of the  $Zr_2(PO_4)PVF_3$  lattice are protonated. If the level of protonation is low and the protons are distributed randomly in the lattice, their presence, or rather the structural distortion protonation would cause, would not be detected by X-ray diffraction. The protons must have associated halide ions for charge neutrality, which would presumably be in the pores.

Platinum Incorporation. Colloidal Pt particles are conveniently prepared by hydrogen reduction of PtCl<sub>4</sub><sup>2-</sup> and are known to be excellent catalysts for the reduction of water to  $H_2$  gas.<sup>31,32</sup> PtCl<sub>4</sub><sup>2-</sup> can be readily incorporated into the porous materials described above by simple ion exchange for the intrapore halide ions. The initially white compounds are orange after the exchange procedure. The platinate ions are then reduced to Pt<sup>0</sup> by suspending the exchanged compound in water and bubbling H<sub>2</sub> gas through the suspension. During this process, the suspension turns a deep blue, which is an indication of the formation of reduced viologen. The extent of platinum incorporation has been monitored by ICP analysis of the dissolved solids. A Zr:Pt ratio of 4:1 is expected for complete exchange of  $PtCl_4^{2-}$  into  $Zr_2(PO_4)PVX_3$ . Ion exchange leads to higher levels of Pt incorporation than expected, i.e., final Zr:Pt ratio of 3:1. Treatment of ZrPV(X) with a solution of  $PtCl_4^{2-}$ gives very low levels of Pt incorporation (Zr:Pt  $\approx$  35:1) as expected for this dense solid. Ion exchange was also examined with a material which consisted of a mixture of dense and porous materials, i.e., Zr<sub>2</sub>(PO<sub>4</sub>)PVX<sub>3</sub>/ ZrPV(X); see Figure 3b. This material gives significantly lower levels of Pt incorporation than observed for either  $Zr_2(PO_4)PVX_3$  or ZrPV(X); Zr:Pt levels for ionexchanged mixed materials range from 50:1 to 100:1. Bragg reflections from Pt are not observed by powder X-ray diffraction of any of these reduced compounds.

Hydrogen Production. The photochemical splitting of water to give  $H_2$  and  $O_2$  is a common goal for compounds which exhibit a photoinduced charge separation.<sup>33,34</sup> Unfortunately, the reduction and oxidation of water are often kinetically hindered and require a catalyst to overcome these barriers. Colloidal platinum has been found to be an ideal catalyst for the reduction of water to hydrogen gas.<sup>31,32</sup> A sacrificial reductant (EDTA, L-cysteine, triethanolamine, etc.) can be added to an aqueous system in order to study catalytic hydrogen production independent of oxidation. A typical system for the photoreduction of water consists of a dialkylviologen, a sacrificial reductant, colloidal noblemetal particles, and a sensitizer. We have recently demonstrated such as system using a zirconium viologen bisphosphonate thin film.<sup>35</sup> A lower limit quantum yield of 0.8% was obtained for the photolysis of the production of hydrogen by this material.

In our photochemical studies 20-25 mg of the catalyst and 5 mL of 0.1 M EDTA solution were placed in a quartz cuvette. The cuvette was then placed in a temperature controlled (25 °C) water bath with a quartz window. Photolysis of the compound was carried out

<sup>(31)</sup> Harriman, A., West, M. A., Eds. *Photogeneration of Hydrogen*; Academic Press: London, 1982.

<sup>(32)</sup> Grätzel, M., Ed. Energy Resources through Photochemistry and Catalysis; Academic Press: New York, 1983.

<sup>(33)</sup> Fox, M. A.; Chanon, M., Eds. *Photoinducted Charge Transfer*, Elsevier: Amsterdam, 1988.

<sup>(34)</sup> Connolly, J. S., Ed. *Photochemical Conversion and Storage of Solar Energy*, Academic Press: New York, 1981.

<sup>(35)</sup> Snover, J. L.; Thompson, M. E. J. Am. Chem. Soc. 1994, 116, 765-766.



**Figure 7.** Hydrogen production from photolysis of compounds: (a)  $Zr(PO_4)PVX_3 \cdot Pt$ ; (b)  $[Zr(PO_4)PVX_3/ZrPV(X)] \cdot Pt$ . The rate of production ((a) 0.02 mL/ h; (b) 0.12 mL/h) is obtained from the linear regression (solid line) of the data.

with an unfiltered 200 W Hg/Xe lamp. A typical plot of the hydrogen produced versus time for the pure phased  $Zr_2(PO_4)PVX_3$ ·Pt compound is shown in Figure 7. There is approximately a 1-2 h induction period before H<sub>2</sub> is observed by the GC. We speculate this period is due to residual O<sub>2</sub> in the cell which acts to quench the excited viologen prior to electron transfer.<sup>36</sup> Zr<sub>2</sub>(PO<sub>4</sub>)PVX<sub>3</sub>·Pt gives a low rate of hydrogen production, ca. 0.02 mL/h, for several different samples. The rate of H<sub>2</sub> production for a mixed porous and dense phase material  $[Zr_2(PO_4)-$ PVX<sub>3</sub>/ZrPV(X)]·Pt is significantly larger and is also shown in Figure 7, for comparison. The increase in hydrogen production is roughly a factor of 6 (0.12 mL/ h) for the material used in Figure 7. A microcrystalline sample of the dense phase material (ZrPV(X)) was also exchanged with Pt2+ ions and reduced as discussed previously. ZrPV(X) is not a porous material,<sup>29</sup> so the exchange here must be at the surfaces of the microcrystalline particles and reduction leads to fine metal particles on the exterior of the Zr*PV*(X) particles. The ZrPV(X)·Pt compound produces less than 0.005 mL/h. The reason that the mixed phase sample works better than either pure phase is not clearly understood at this time. When the pure porous materials  $(Zr_2(PO_4)PVX_3)$ or the pure dense material (ZrPV(X)) are exchanged with PtCl<sub>4</sub><sup>2-</sup> ions and reduced, the resulting compounds are very dark. The mixed-phase materials tend to be a light gray. One possible explanation is that the light does not reach the viologen moieties as efficiently for the pure (very dark) phases as it does for the mixed (gray) phases, because of light absorption by the platinum particles. Another possible explanation is that for  $Zr_2(PO_4)PVX_3$ ·Pt and ZrPV(X)·Pt the platinum particles are bound to the surfaces of the particles only, so that there is very poor contact between the bulk of the viologen and the platinum particles. We are currently trying to get microanalysis at high enough resolution to determine if the platinum is uniformly distributed or concentrated at the surfaces of these microcrystalline materials.

A lower limit quantum yield for the production of hydrogen has been calculated. For this calculation, the flux of the 200 W lamp was determined for the active wavelengths of the viologen moieties (<320 nm) to be 15-20 mW/cm<sup>2</sup>. We assume that all of the photons emitted from the lamp are absorbed by the compound. A quantum yield ( $2 \times \text{mol } H_2/\text{mol photons incident with}$  $\lambda$  < 320 nm) of 4% has been determined for the mixedphase compounds using the average rate (0.15 mL/h) of hydrogen production for several samples. The rate of hydrogen production usually becomes constant after about 10 h of exposure to the light. The strong UV light eventually destroys the system after 18 h of exposure. The usefulness of these materials is limited to UV light. We are continuing to optimize the system and are trying to design materials which absorb in the middle of the visible spectrum.

Acknowledgment. The authors would like to thank The American Biomimetics Corporation and the National Science Foundation (Grant CHE-9312856) for their financial support of this work. D.M.P. and A.C. thank the National Science Foundation (Grant DMR-91107715) for financial support. Electron probe microanalysis (EPMA) was performed on a CAMECA SX-50 by Dr. Edward Vicenzi at the Princeton Materials Institute's Electron Microbeam Facility. The authors would also like to thank Professor John Parise for collecting the powder synchrotron data used to solve the structure of Zr<sub>2</sub>(PO<sub>4</sub>) PVF<sub>3</sub>·H<sub>2</sub>O. Professor Parise's support was provided by the National Science Foundation (DMR 94-13003). Research was carried out in part at beamline X7A, the National Synchrotron Light Source at Brookhaven National Laboratory; supported by the U.S., Department of Energy, Division of Materials Science and Division of Chemical Science.

CM960030U

<sup>(36)</sup> An alternate explanation is that the induction period is due to slow saturation of the aqueous solution by hydrogen gas. The saturation level for  $H_2$  for 5 mL of aqueous solution (30 °C) is 0.044 mL. For the poorer catalysts this amount of hydrogen would account for a 2 h induction period, as observed. For the better catalysts, however, the rate of hydrogen production would saturate the solution in less than 20 min, not 2 h.

**Supporting Information Available:** A complete listing of bond lengths and angles for  $Zr_2(PO_4)PVF_3 \cdot 3H_2O$  (4 pages). Ordering information is given on any current masthead page.